Compact Hankel operators on the Bergman space
نویسندگان
چکیده
منابع مشابه
Finite Rank Intermediate Hankel Operators on the Bergman Space
In this paper we characterize the kernel of an intermediate Hankel operator on the Bergman space in terms of the inner divisors and obtain a characterization for finite rank intermediate Hankel operators.
متن کاملHankel Operators on the Bergman Space of Bounded Symmetric Domains
Let ii be a bounded symmetric domain in C with normalized 2 volume measure dV . Let P be the orthogonal projection from L (il, dV) 2 2 onto the Bergman space La(Q) of holomorphic functions in L (ii, dV). Let P be the orthogonal projection from L (ii, dV) onto the closed subspace of antiholomorphic functions in L (ii, dV). The "little" Hankel operator h, with symbol / is the operator from La(Ci)...
متن کاملToeplitz and Hankel Operators on a Vector-valued Bergman Space
In this paper, we derive certain algebraic properties of Toeplitz and Hankel operators defined on the vector-valued Bergman spaces L2,C n a (D), where D is the open unit disk in C and n ≥ 1. We show that the set of all Toeplitz operators TΦ,Φ ∈ LMn(D) is strongly dense in the set of all bounded linear operators L(L2,Cn a (D)) and characterize all finite rank little Hankel operators.
متن کاملCompact Hankel Operators on the Hardy Space of the Polydisk
We show that a big Hankel operator on the standard Hardy space of the polydisk D, n > 1, cannot be compact unless it is the zero operator. We also show that this result can be generalized to certain Hankel operators defined on Hardy-Sobolev spaces of the polydisk.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1990
ISSN: 0019-2082
DOI: 10.1215/ijm/1255988500